DocumentDB SQL – 复合 SQL 查询
DocumentDB SQL – 复合 SQL 查询
复合查询使您能够组合来自现有查询的数据,然后在显示报告结果(显示组合数据集)之前应用过滤器、聚合等。复合查询检索关于现有查询的多个级别的相关信息,并将组合数据呈现为单个扁平化查询结果。
使用复合查询,您还可以选择 –
-
选择 SQL 修剪选项以根据用户的属性选择删除不需要的表和字段。
-
设置 ORDER BY 和 GROUP BY 子句。
-
将 WHERE 子句设置为复合查询结果集的过滤器。
可以组合上述运算符以形成更强大的查询。由于 DocumentDB 支持嵌套集合,因此组合可以串联或嵌套。
让我们考虑此示例的以下文档。
AndersenFamily文档如下。
{ "id": "AndersenFamily", "lastName": "Andersen", "parents": [ { "firstName": "Thomas", "relationship": "father" }, { "firstName": "Mary Kay", "relationship": "mother" } ], "children": [ { "firstName": "Henriette Thaulow", "gender": "female", "grade": 5, "pets": [ { "givenName": "Fluffy", "type": "Rabbit" } ] } ], "location": { "state": "WA", "county": "King", "city": "Seattle" }, "isRegistered": true }
SmithFamily文档如下。
{ "id": "SmithFamily", "parents": [ { "familyName": "Smith", "givenName": "James" }, { "familyName": "Curtis", "givenName": "Helen" } ], "children": [ { "givenName": "Michelle", "gender": "female", "grade": 1 }, { "givenName": "John", "gender": "male", "grade": 7, "pets": [ { "givenName": "Tweetie", "type": "Bird" } ] } ], "location": { "state": "NY", "county": "Queens", "city": "Forest Hills" }, "isRegistered": true }
WakefieldFamily文档如下。
{ "id": "WakefieldFamily", "parents": [ { "familyName": "Wakefield", "givenName": "Robin" }, { "familyName": "Miller", "givenName": "Ben" } ], "children": [ { "familyName": "Merriam", "givenName": "Jesse", "gender": "female", "grade": 6, "pets": [ { "givenName": "Charlie Brown", "type": "Dog" }, { "givenName": "Tiger", "type": "Cat" }, { "givenName": "Princess", "type": "Cat" } ] }, { "familyName": "Miller", "givenName": "Lisa", "gender": "female", "grade": 3, "pets": [ { "givenName": "Jake", "type": "Snake" } ] } ], "location": { "state": "NY", "county": "Manhattan", "city": "NY" }, "isRegistered": false }
我们来看一个串联查询的例子。
以下是将检索第一个孩子givenName是 Michelle的家庭的 id 和位置的查询。
SELECT f.id,f.location FROM Families f WHERE f.children[0].givenName = "Michelle"
执行上述查询时,会产生以下输出。
[ { "id": "SmithFamily", "location": { "state": "NY", "county": "Queens", "city": "Forest Hills" } } ]
让我们考虑另一个串联查询的例子。
以下是将返回第一个孩子成绩大于 3 的所有文档的查询。
SELECT * FROM Families f WHERE ({grade: f.children[0].grade}.grade > 3)
执行上述查询时,会产生以下输出。
[ { "id": "WakefieldFamily", "parents": [ { "familyName": "Wakefield", "givenName": "Robin" }, { "familyName": "Miller", "givenName": "Ben" } ], "children": [ { "familyName": "Merriam", "givenName": "Jesse", "gender": "female", "grade": 6, "pets": [ { "givenName": "Charlie Brown", "type": "Dog" }, { "givenName": "Tiger", "type": "Cat" }, { "givenName": "Princess", "type": "Cat" } ] }, { "familyName": "Miller", "givenName": "Lisa", "gender": "female", "grade": 3, "pets": [ { "givenName": "Jake", "type": "Snake" } ] } ], "location": { "state": "NY", "county": "Manhattan", "city": "NY" }, "isRegistered": false, "_rid": "Ic8LAJFujgECAAAAAAAAAA==", "_ts": 1450541623, "_self": "dbs/Ic8LAA==/colls/Ic8LAJFujgE=/docs/Ic8LAJFujgECAAAAAAAAAA==/", "_etag": "\"00000500-0000-0000-0000-567582370000\"", "_attachments": "attachments/" }, { "id": "AndersenFamily", "lastName": "Andersen", "parents": [ { "firstName": "Thomas", "relationship": "father" }, { "firstName": "Mary Kay", "relationship": "mother" } ], "children": [ { "firstName": "Henriette Thaulow", "gender": "female", "grade": 5, "pets": [ { "givenName": "Fluffy", "type": "Rabbit" } ] } ], "location": { "state": "WA", "county": "King", "city": "Seattle" }, "isRegistered": true, "_rid": "Ic8LAJFujgEEAAAAAAAAAA==", "_ts": 1450541624, "_self": "dbs/Ic8LAA==/colls/Ic8LAJFujgE=/docs/Ic8LAJFujgEEAAAAAAAAAA==/", "_etag": "\"00000700-0000-0000-0000-567582380000\"", "_attachments": "attachments/" } ]
我们来看一个嵌套查询的例子。
以下是将迭代所有父项然后返回familyName为 Smith的文档的查询。
SELECT * FROM p IN Families.parents WHERE p.familyName = "Smith"
执行上述查询时,会产生以下输出。
[ { "familyName": "Smith", "givenName": "James" } ]
让我们考虑另一个嵌套查询的例子。
以下是将返回所有familyName的查询。
SELECT VALUE p.familyName FROM Families f JOIN p IN f.parents
执行上述查询时,会产生以下输出。
[ "Wakefield", "Miller", "Smith", "Curtis" ]