Hazelcast – 地图缩减和聚合

Hazelcast – 地图缩减和聚合


MapReduce 是一种计算模型,当你有大量数据并且你需要多台机器时,即一个分布式环境来计算数据时,它对数据处理很有用。它涉及将数据“映射”成键值对,然后“归约”,即对这些键进行分组并对值执行操作。

鉴于 Hazelcast 的设计考虑到了分布式环境,因此自然而然地实现 Map-Reduce 框架。

让我们通过一个例子来看看如何做到这一点。

例如,假设我们有关于汽车(品牌和汽车编号)和汽车所有者的数据。

Honda-9235, John
Hyundai-235, Alice
Honda-935, Bob
Mercedes-235, Janice
Honda-925, Catnis
Hyundai-1925, Jane

现在,我们必须弄清楚每个品牌的汽车数量,即现代、本田等。

例子

让我们尝试使用 MapReduce 找出答案 –

package com.example.demo;

import java.lang.reflect.Array;
import java.util.ArrayList;
import java.util.Map;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.atomic.AtomicInteger;

import com.hazelcast.core.Hazelcast;
import com.hazelcast.core.HazelcastInstance;
import com.hazelcast.core.ICompletableFuture;
import com.hazelcast.core.IMap;
import com.hazelcast.mapreduce.Context;
import com.hazelcast.mapreduce.Job;
import com.hazelcast.mapreduce.JobTracker;
import com.hazelcast.mapreduce.KeyValueSource;
import com.hazelcast.mapreduce.Mapper;
import com.hazelcast.mapreduce.Reducer;
import com.hazelcast.mapreduce.ReducerFactory;

public class MapReduce {
   public static void main(String[] args) throws ExecutionException,
   InterruptedException {
      try {
         // create two Hazelcast instances
         HazelcastInstance hzMember = Hazelcast.newHazelcastInstance();
         Hazelcast.newHazelcastInstance();
         IMap<String, String> vehicleOwnerMap=hzMember.getMap("vehicleOwnerMap");
         vehicleOwnerMap.put("Honda-9235", "John");
         vehicleOwnerMap.putc"Hyundai-235", "Alice");
         vehicleOwnerMap.put("Honda-935", "Bob");
         vehicleOwnerMap.put("Mercedes-235", "Janice");
         vehicleOwnerMap.put("Honda-925", "Catnis");
         vehicleOwnerMap.put("Hyundai-1925", "Jane");
         KeyValueSource<String, String> kvs=KeyValueSource.fromMap(vehicleOwnerMap);
         JobTracker tracker = hzMember.getJobTracker("vehicleBrandJob");
         Job<String, String> job = tracker.newJob(kvs);
         ICompletableFuture<Map<String, Integer>> myMapReduceFuture =
            job.mapper(new BrandMapper())
            .reducer(new BrandReducerFactory()).submit();
         Map<String, Integer&g result = myMapReduceFuture.get();
         System.out.println("Final output: " + result);
      } finally {
         Hazelcast.shutdownAll();
      }
   }
   private static class BrandMapper implements Mapper<String, String, String, Integer> {
      @Override
      public void map(String key, String value, Context<String, Integer>
      context) {
         context.emit(key.split("-", 0)[0], 1);
      }
   }
   private static class BrandReducerFactory implements ReducerFactory<String, Integer, Integer> {
      @Override
      public Reducer<Integer, Integer> newReducer(String key) {
         return new BrandReducer();
      }
   }
   private static class BrandReducer extends Reducer<Integer, Integer> {
      private AtomicInteger count = new AtomicInteger(0);
      @Override
      public void reduce(Integer value) {
         count.addAndGet(value);
      }
      @Override
      public Integer finalizeReduce() {
         return count.get();
      }
   }
}

让我们试着理解这段代码 –

  • 我们创建 Hazelcast 成员。在示例中,我们只有一个成员,但也可以有多个成员。
  • 我们使用虚拟数据创建地图并从中创建键值存储。

  • 我们创建一个 Map-Reduce 作业并要求它使用键值存储作为数据。

  • 然后我们将作业提交到集群并等待完成。

  • 映射器创建一个键,即从原始键中提取品牌信息并将值设置为 1,然后将该信息作为 KV 发送给化简器。

  • reducer 只是简单地根据键(即品牌名称)对值进行求和,对数据进行分组。

输出

代码的输出 –

Final output: {Mercedes=1, Hyundai=2, Honda=3}

觉得文章有用?

点个广告表达一下你的爱意吧 !😁