Impala – 按条款排序

Impala – 按条款排序


Impala ORDER BY子句用于根据一列或多列按升序或降序对数据进行排序。某些数据库默认按升序对查询结果进行排序。

句法

以下是 ORDER BY 子句的语法。

select * from table_name ORDER BY col_name [ASC|DESC] [NULLS FIRST|NULLS LAST]

您可以分别使用关键字ASCDESC以升序或降序排列表中的数据

同理,如果我们使用NULLS FIRST,则表中所有的空值都排在最上面的几行;如果我们使用 NULLS LAST,则包含空值的行将排在最后。

例子

假设我们在数据库my_db 中有一个名为customers的表,其内容如下 –

[quickstart.cloudera:21000] > select * from customers;
Query: select * from customers 
+----+----------+-----+-----------+--------+ 
| id | name     | age | address   | salary | 
+----+----------+-----+-----------+--------+ 
| 3  | kaushik  | 23  | Kota      | 30000  | 
| 1  | Ramesh   |  32 | Ahmedabad | 20000  | 
| 2  | Khilan   | 25  | Delhi     | 15000  | 
| 6  | Komal    | 22  | MP        | 32000  | 
| 4  | Chaitali | 25  | Mumbai    | 35000  | 
| 5  | Hardik   | 27  | Bhopal    | 40000  | 
+----+----------+-----+-----------+--------+ 
Fetched 6 row(s) in 0.51s

以下是使用order by子句按其id 的升序排列客户表中的数据的示例

[quickstart.cloudera:21000] > Select * from customers ORDER BY id asc;

执行时,上述查询会产生以下输出。

Query: select * from customers ORDER BY id asc 
+----+----------+-----+-----------+--------+ 
| id | name     | age | address   | salary | 
+----+----------+-----+-----------+--------+ 
| 1  | Ramesh   | 32  | Ahmedabad | 20000  | 
| 2  | Khilan   | 25  | Delhi     | 15000  | 
| 3  | kaushik  | 23  | Kota      | 30000  | 
| 4  | Chaitali | 25  | Mumbai    | 35000  | 
| 5  | Hardik   | 27  | Bhopal    | 40000  | 
| 6  | Komal    | 22  | MP        | 32000  | 
+----+----------+-----+-----------+--------+ 
Fetched 6 row(s) in 0.56s

同样,您可以使用order by子句按降序排列客户的数据,如下所示。

[quickstart.cloudera:21000] > Select * from customers ORDER BY id desc;

执行时,上述查询会产生以下输出。

Query: select * from customers ORDER BY id desc 
+----+----------+-----+-----------+--------+ 
| id | name     | age | address   | salary | 
+----+----------+-----+-----------+--------+ 
| 6  | Komal    | 22  | MP        | 32000  | 
| 5  | Hardik   | 27  | Bhopal    | 40000  | 
| 4  | Chaitali | 25  | Mumbai    | 35000  | 
| 3  | kaushik  | 23  | Kota      | 30000  | 
| 2  | Khilan   | 25  | Delhi     | 15000  |
| 1  | Ramesh   | 32  | Ahmedabad | 20000  | 
+----+----------+-----+-----------+--------+ 
Fetched 6 row(s) in 0.54s

觉得文章有用?

点个广告表达一下你的爱意吧 !😁